0 00 00 000 000 000 00 00	Introduction	Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
					0000		0000	

Perspectives in numerical astrophysics

Towards an exciting future in the exascale era

Vincent Reverdy

Department of Astronomy, University of Illinois at Urbana-Champaign

SF2A, June 17, 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction	Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
0	00	000	000	0000	00	0000	00

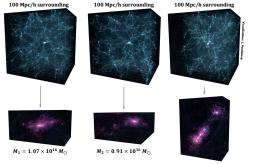
Introduction

Introduction	Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
•	00	000	000	0000	00	0000	00
Outlin	е						

Introduction

- Numerical cosmology
- **3** Why more computing power?
- 4 Community challenges
- 5 Performance challenges
- 6 Programming
- 7 Illustration

Introduction Numerical cosmolo	y Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
0 00	000	000	0000	00	0000	00


Numerical cosmology

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

	Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
	•0	000	000	0000	00	0000	00
How d	id it start?						

Dark Energy Simulation Series: Full Universe Run

- 3 different cosmological models
- Scale of the observable Universe
- Fine-tuned version of RAMSES
- 80 000 cores (Curie Supercomputer)
- 1.6 Petabytes of data

 $M_3 = 0.89 \times 10^{16} \, M_\odot$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
	00	000	000	0000	00	0000	00
How d	id it start?						

Physics lessons

- Newtonian simulations
- How to take into account relativistic effects?
- Kinematic effects (photon trajectory)
- Dynamic effects (backreaction conjecture)

Numerical lessons

- Codes like RAMSES are difficult to modify: lack of genericity
- Current codes won't scale up to exascale: lack of performance

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Current petascale supercomputers are massively under-used

	Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
0				0000		0000	

Why more computing power?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction	Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
	00	•00	000	0000	00	0000	00
Why n	nore compu	ting power?					

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Same physical complexity

- Bigger and/or longer simulations
- More resolution (space, time...)
- More simulations (statistical accuracy)

More complex problems

- More orders in equations
- More physical effects
- More complex geometries

Introduction	Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
		000					
Why n	nore compu	ting power?					

4 August 1972, Volume 177, Number 4047

SCIENCE

More Is Different

Broken symmetry and the nature of the hierarchical structure of science.

P. W. Anderson

The reductionist hypothesis may still be a topic for controvery among philocophers, but among the great majority of active scientists 1 thank it is accepted without question. The workings of our minds and bodies, and of all the animate or inanimate matter of which we have any detailed knowledge, are assumed to be controlled by the same set of fundamental laws, which except under certain extreme conditions we feel we know returt well.

It seems inevitable to go on uncritically to what appears at first sight to

planation of phenomena in terms of known fundamental laws. As always, distinctions of this kind are not unambiguous, but they are clear in most cases. Solid state physics, plasma physics, and perhaps also biology are extensive. High energy physics and a good part of nuclear physics are intensive. There is always much less intensive research going on than extensive. Once new fundamental laws are discovered, a large and ever increasing activity begins in order to apply the discoveries to hitherto unexplained phenomena. Thus, there are two dimensions to basic research. The frontier of science extends all along a long line from the newest and most modern intensive research, over the exless relevance they seem to have to the very real problems of the rest of science, much less to those of society. The constructionist hypothesis breaks down when confronted with the twin difficulties of scale and complexity. The behavior of large and complex aggregates of elementary particles, it turns out, is not to be understood in terms of a simple extrapolation of the properties of a few particles. Instead, at each level of complexity entirely new properties appear, and the understanding of the new behaviors requires research which I think is as fundamental in its nature as any other. That is, it seems to me that one may array the sciences roughly linearly in a hierarchy, according to the idea: The elementary entities of science X obey the laws of science Y.

	x	Y
chemis	y-body physics try ilar biology	elementary particl physics many-body physic chemistry molecular biology
psycho social	logy sciences	physiology psychology

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

On the notion of emergence

■ Simple rules ⇒ complex phenomena

Introduction	Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
		000					
Why n	nore compu	ting power?					

イロト 不得 トイヨト イヨト

3

Same physical complexity

- Bigger and/or longer simulations
- More resolution (space, time...)
- More simulations (statistical accuracy)

More complex problems

- More orders in equations
- More physical effects
- More complex geometries

What about less complex physics?

- Less specific
- Fewer parameters
- More abstract
- More generic
- And most of the time, more accurate

	Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
0	00	000	000	0000	00	0000	00

Community challenges

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Expectation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Simulation: expectation vs reality

Expectation

Reality

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

	Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
	00	000	000	0000	00	0000	00
Lat's t	مالد مام منا م						

Let's talk about computers

Warning

I am talking about computers

Simulations are the end result of an interdisciplinary work

- Astrophysics
- Mathematics
- Algorithms
- Data structures
- Parallelism
- Software architecture (can be based on category theory)
- HPC and software/hardware co-design

Computers are despicable/shameful

- As a matter of fact, most of the community consider the computer side of what people do as "a technical detail" or "engineering stuff nobody cares about"
- Identification of [algorithm], [code], [implementation] and [other computer stuff]

Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
00	000	000	0000	00	0000	00
مالد مام منا م						

Let's talk about computers

A problem of terminology?

Maybe a French problem, one word "informatique", for two concepts:

- IT: Information Technology
- CS: Computer Science

Consequences

- Computer stuff is often considered as an "engineering problem": computer science is ignored
- Working on implementations is often considered as an "academic suicide" as noted during the Exascale Computing in Astrophysics Conference (2013)
- A lot of codes are blocked in the 70's or 90's, ignoring computer science results since then (both fundamental and applied computer science)

HPC vs observational projects

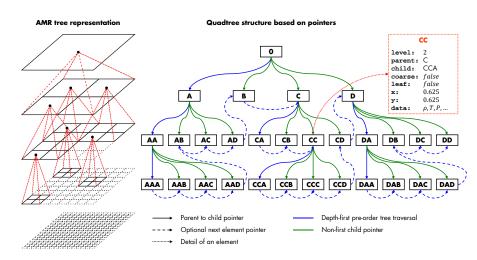
- Numerical Simulation ⇒ Computer Aided Theory
- Big collaborations on telescopes and instruments
- Very few equivalent to develop tools and codes for HPC

	Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
0	00	000	000	0000	00	0000	00

Performance challenges

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
			0000			


Pure computing power vs data transfer

Data transfer	DATA TRANSFER TIMINGS						
Operation	Approx. time	Remark					
L1 cache reference	0.5 ns						
One cycle on a 3 GHz processor	1 ns						
Branch mispredict	5 ns						
L2 cache reference	7 ns	14× L1 cache					
Mutex lock or unlock	25 ns						
Main memory reference	100 ns	200× L1 cache					
Send 1 KB over a 1 Gbps network	10 µs						
Read 1 MB sequentially from main memory	250 µs						
Round trip within the same datacenter	500 μs						
Read 1 MB sequentially from a SSD	1 ms	4× memory					
Disk seek	10 ms	20 imes datacenter RT					
Read 1 MB sequentially from disk	20 ms	80× memory					
Send packet California \rightarrow Netherlands \rightarrow California	150 ms						

Consequences

- Most of the time, pure computing time is not the problem
- $\label{eq:model} \begin{array}{l} \mbox{Most of the time, data transfer is the problem:} \\ [disk] \rightarrow [memory] \rightarrow [cache] \\ [cache] \leftarrow [node memory] \leftrightarrow [node memory] \rightarrow [cache] \end{array}$
- Once everything is in cache, computations are fast

	Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
	00	000	000	0000	00	0000	00
Data s	structures						

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

	Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
				0000			
D .							

Data structures

		16-bit binary code	key	data
		000000000000000000000000000000000000000	00000	•]
		100000000000000000000000000000000000000	32768	
	,	100100000000000000000000000000000000000	36864	I
		10010010000000000	37376	I
		10010010100000000	37504	
1/1		1001001100000000	37632	- · · · · · · · · · · · · · · · · · · ·
		1001001110000000	37760	
		100101000000000000	37888	I
$\mathcal{U} \longrightarrow \mathcal{U}$		1001100000000000	38912	I
		10011100000000000	39936	
		101000000000000000000000000000000000000	40960	.
		<u>1100000000000000000</u>	49152	- •
		110100000000000000	53248	
		<u>110101000000000</u>	54272	
		<u>110110000000000</u> 000	55296	
		<u>1101101000000000</u> 000	55808	
		<u>1101101010000</u> 000	55936	- <u>-</u>
	.	<u>1101101100000000</u>	56064	- <u></u>
		1101101110000000	56192	
		11011100000000000	56320	···
		<u>11100000000000000</u> 000	57344	•
		111100000000000000	61440	
		1111001000000000	61952	-
		1111001010000000	62080	
› ‹‹ ۵ ـ ۵ ـ ۵ ـ ۵ ـ ۵ ـ ۵ ـ ۵ ـ ۵ ـ ۵ ـ		1111001100000000	62208	
		1111001110000000	62336	•
	از این	1111010000000000	62464	
		1111100000000000	63488	-
,		1111110000000000000	64512	-• ···
AMR tree representation	Indexing representation	Encoding	Internal rep	resentation

	Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
				0000			
Examp	les of direc	tions of investig	gation				

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Data structures

Work on graph theory

Pure performance

Compile-time computation (metaprogramming)

Parallelism

- Going beyond MPI and OpenMP models
- Creation of dependency graphs to manage asynchronism

	Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
0	00	000	000	0000	00	0000	00

Programming

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Introduction	Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
					•0		
Progra	mming cha	llenges					

Questions

- How to design modular software?
- How to make codes in which changing the physics...only require changing the physics
- How to make reliable and maintainable softwares?
- How to obtain both performance and genericity?

Software architecture

- Extremely complex problem
- Comparable to unification in physics, but on the computer science side
- Can require work in theoretical computer science and/or category theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

But enormous advantages in the long run

Introduction	Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
					00		
Progra	mming cha	llenges					

Applications							
High level libraries							
Wrappers and bindings Python R Java							
Optimized libraries Interpreters (Python, R) Virtual machines (JVM)							
Compiled, native, low level languages (C, C++)							
Compilers, mostly written in C and C++ (GCC, LIVM)							
Machine layer, assembly instructions							

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Performances and genericity

- Work on compilers
- Work on DSELs: Domain Specific Embedded Languages

	Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
0	00	000	000	0000	00	0000	00

Illustration

	Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
						0000	
Contex	zt.						

Motivation

- Long term physics goal: relativistic cosmological code
- Long term numerical goal: genericity and performance

Methodology

- Build on lessons from DEUS-FUR
- Start from scratch: no concessions on genericity and performances
- Ignore the problem of implementation time

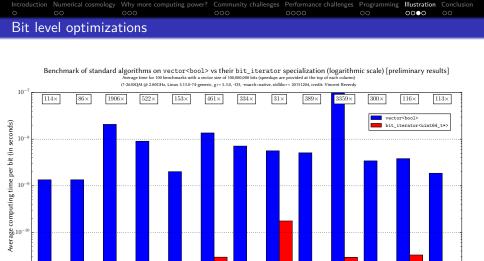
Illustration: solving the tree problems in full genericity

- Need: generic AMR and k-D trees (N-dimensions, generic contents, platform specific optimizations)
- Working on the abstract problem: solving the problem of trees: machine learning, geolocalization, abstract syntax trees for compilers, XML trees (web)...AMR and k-D trees
- Explicit, implicit and compressed trees generated at compile-time

Introduction	Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
						0000	
Workir	ng on bits						

But...

Implicit trees require fast bit operations


How?

- So let's work on bits at the fundamental level
- Exploit assembly cryptographic instructions

Details

- 6 months of work
- 3 months of paper/pen software architecture
- Applications in cryptography, compression, arbitrary length arithmetic, bioinformatics...

■ Will be integrated to the C++ language

Temove

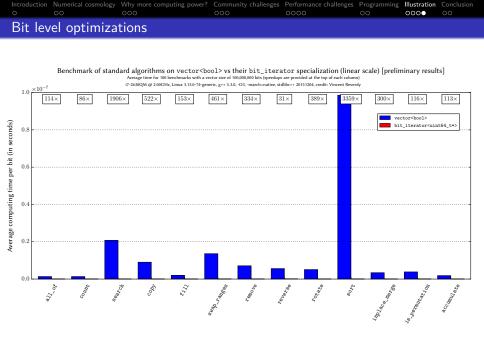
Corace

"Ver 30

2000

 10^{-11}

20,05


Count

Search

Cop.

 t_{II}

the state of the s

- 《 口 》 《 团 》 《 臣 》 《 臣 》 三臣 - の � !

	Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
							•0
Conclu	isions						

Take-home lessons

- Numerical astrophysics is an interdisciplinary field
- More computing power can enable simpler physics exploration
- Exascale simulations will require new approaches
- A lot can be learned from computer science
- Data transfer is a real bottleneck (almost free computation once things are in cache)
- Algorithm and software design are pen/paper exercises
- Not hesitating to solve fundamental problem from scratch can have large benefits

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

	Numerical cosmology	Why more computing power?	Community challenges	Performance challenges	Programming	Illustration	Conclusion
0	00	000	000	0000	00	0000	0•

Thank you for your attention

Any question?

