Kinetic Simulations of Magnetic Reconnection

towards multi-scale simulation...

SF2A Lyon 17/06/2016 **Nicolas Aunai** Andrea Ciardi **Roch Smets** Mathieu Drouin J. Dargent M. Hesse B. Lavraud M. Grech J. Derouillat F. Perrez T. Vinci A. Beck

INTERPLANETARY SPACE Solar Wind

PREDICTED BY PARKER 1958, CONFIRMED EXPLORER 12 IN 1962

MAGNETIC RECONNECTION... KEY PROCESS IN SUN-EARTH COUPLING

ZOOMING OUT...

Our magnetosphere

In situ measurements

ACTUALLY ALSO OCCURS THROUGHOUT THE HELIOSPHERE

Astrospheres?

UNIVERSAL PROCESS??

Magnetopause reconnection MAGNETOSPHERIC RESENTECTION 1 Transport

► [Dungey 1950's] (F. Hoyle student)	
Interplanetary Field Southword	Sect matter we
North Solar Win	

Tail reconnection (expansion phase)

MAGNETOSPHERIC RECONNECTION

Dipolarization

(recovery phase)

0

MAGNETOSPHERIC RECONNECTION

► [Dungey 1950's] (F. Hoyle student)	
Interplanetary Field Southward	12
Win	Elh

How does reconnection work? Two magnetized plasmas in « contact »

CAN BE RECONNECTED

EJECTED FROM THE RECONNECTION SITE

EJECTED FROM THE RECONNECTION SITE

THIS DRIVES THE PULLING OF UPSTREAM FLUX AND PLASMA

WHICH IS RECONNECTED AND EJECTED ETC. ETC. AND THE PROCESS IS SELF MAINTAINED

HOW MUCH FLUX DOES IT RECONNECT PER TIME UNIT? HOW DO FIELD LINES TO CHANGE THEIR CONNECTIVITY? WHAT MINIMAL MODEL FOR REALISTIC RECONNECTION EFFECTS?

MAGNETOHYDRODYNAMICS MODELS

P. Sweet

E. Parker

H. Petschek

SWEET-PARKER RECONNECTION MODEL 1950's

SWEET-PARKER RECONNECTION MODEL 1950's

D : IS THE DIFFUSION SCALE LENGTH : VERY SMALL IN WEAKLY COLLISIONAL PLASMAS

L : IS COMPARABLE TO THE CHARACTERISTIC SIZE OF THE RECONNECTING SYSTEM : HUGE IN ASTROPHYSICS

$$v_{in} \sim \frac{d}{L} V_A$$

[BHATTACHARJEE ET AL. 2009]

PETSCHEK RECONNECTION MODEL 1960's

DISSIPATION REGION IS (CHOSEN TO BE) LOCALIZED IN BOTH DIRECTIONS

NO BOTTLENECK, FAST RECONNECTION

THE PLASMA IS ACCELERATED THROUGH SHOCKS (SWITCH-OFF SLOW SHOCKS)

PROBLEM : CAN'T JUSTIFY THE LOCAL ENHANCEMENT OF RESISTIVITY

THE PLASMA IS COLLISIONLESS

COLLISIONLESS EFFECTS

SINGLE FLUID FROZEN IN THE MAGNETIC FIELD

ONLY ELECTRONS ARE ASSUMED TO BE FROZEN IN B. ON INERTIA ALLOW THEM TO DETACH AT SMALL SCALES

Resistive MHD

 δ_{sp}

 δ_i

Collisionless world

\ll Standard \gg collisionless reconnection model

Two-

[Birn et al. JGR 2001]

SUCCESS OF ION SCALE MULTI-SPACECRAFT MEASUREMENTS

SUCCESS OF ION SCALE MULTI-SPACECRAFT MEASUREMENTS

SIMULATION

MULTI-SCALES - MULTI-PHYSICS - KEY INGREDIENTS?

Multi-Scale

1990-2005 HALL RECONNECTION

1950's 60's FIRST MHD MODELS

1940's BIRTH OF RECONNECTION

ungev

Particle-Mesh code

ELECTRON SCALE MECHANISMS - NON-GYROTROPY

Generally true as long as $~\lambda \gg
ho_L$ and $\omega \ll \omega_c$

ELECTRON NONGYROTROPY [HESSE ET AL. 2010, AUNAI ET AL. 2013]

[DARGENT+ IN PREP]

Impact of cold ions on reconnection

Plasmaspheric plume

Plasmaspheric plume touching the magnetopause in storm times

Plasmaphere plasma (>10 part/cm³, 5eV)

Plasmaspheric plume

Plasmaspheric plume touching the magnetopause in storm times

Plasmaphere plasma (>10 part/cm³, 5eV)

Plasmaspheric plume

Plasmaspheric plume touching the magnetopause in storm times

Plasmaphere plasma (>10 part/cm³, 5eV)

Plasmaspheric plume

Can we use transport coef. and forget about electron kinetic physics?

SCALES IN HYBRID CODES

HYBRID RUNS VS FULL PIC RUNS

[AUNAI ET AL. 2013B]

full PIC and hybrid PIC lead to a very similar evolution of asymmetric reconnection

ROLE OF THE IMF ORIENTATION

IMF -> local magnetic shear

[TRATTNER ET AL. JGR (2010)]

RECONNECTION AT THE MAGNETOPAUSE

- WHERE DOES IT START ? AND WHY ?
- HOW DOES IT SPREAD?
- HOW DOES IT EVOLVE?
- HOW DOES IT AFFECT TRANSPORT?
- ETC.
- How does it couples to solar wind?

- ETC.

How does reconnection orient itself?

IF 2D... WHAT'S THE RECONNECTION PLANE ORIENTATION?

FIND THE « FASTEST PLANE »

 $max(B_{1x}(\theta)^2 B_{2x}(\theta)^2)$ X line along bisector

X LINE ORIENTATION Hybrid runs varying shear angles and asymmetry [AUNAI+ JPP 2016]

Bisecting upstream fields lead to faster rates

θ

Mercury's magnetosphere simulation Solar wind interaction with different dipolar or multipolar intrinsic field $\Delta x = \delta_i ~\text{[RICHER ET AL. 2012]}$

Comparisons to Messenger data

Ganymede with 2 grids

WHISTLER WAVES KILLERS

[Kunz et al. 2014]

 $w\propto k^2$ Very strong constraint on Hybrid $dt\propto dx^2$ codes (and Hall MHD codes)

3D (implicit) fully kinetic embedded in a MHD domain for Ganymede simulation

VLASIATOR Towards a global Vlasov - Hybrid magnetosphere model?

Global simulations of Earth magnetosphere Vlasov hybrid : mesh velocity space ! Huge memory consumption

3D : 1000³ * 100³ = 10¹⁵ phase space cells! Only 2D3V simulations (so far) : 10¹² cells! MPI/OpenMP + Dynamic load balancing (Zoltan)

Proton distribution functions from meshed velocity space

[MULLER AL. 2011]

Adaptive Mesh capability Not trivial for kinetic

- dispersive waves
- merge/split macroparticles Complicated load balancing

Comparison to Messenger data Sharp magnetopause and shock

Proof of concept but no scalability for large number of cores

THE FRENCH AEROSPACE LAR

