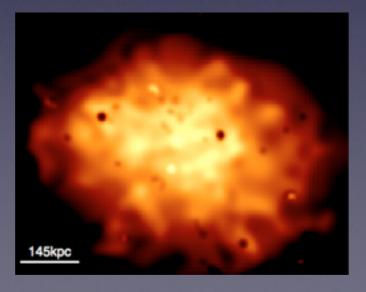
Collisionless plasma dynamo

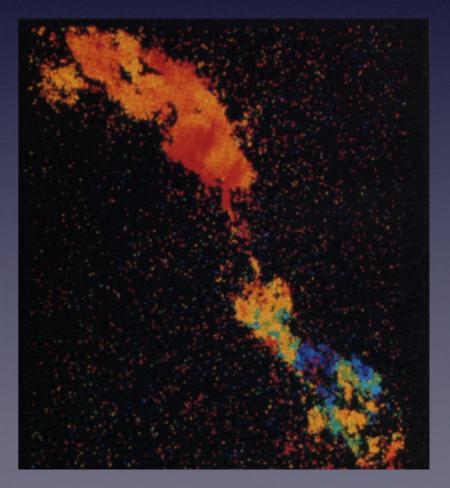
François Rincon (IRAP Toulouse)

with Francesco Califano (U. Pisa), Alex Schekochihin (Oxford), F. Valentini (U. Calabria)

Acknowledgements:

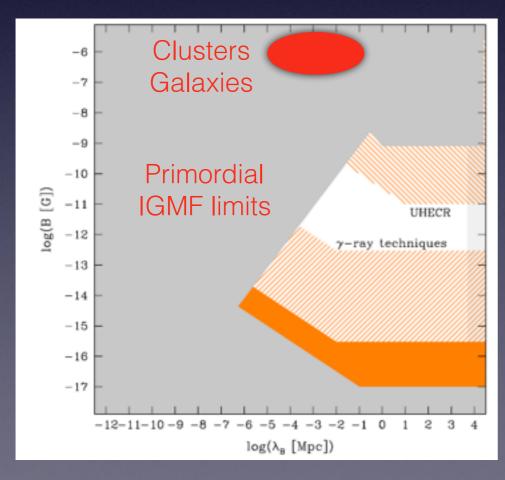
S. Cowley, M. Kunz, C. Cavazzoni



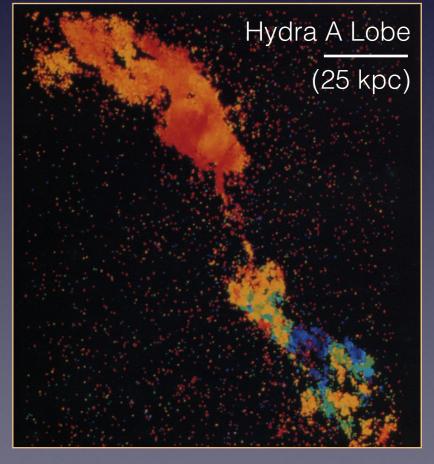


Cosmic magnetogenesis

- How are magnetic fields generated on cosmic scales?
 - Magnetic seeds in the early Universe: 10⁻²¹(-10⁻⁹?) G
 - ICM fields: 1-40 μG at fairly large (~ 1-10 kpc) scales
 - Constraint: 5-15 fold increase on a few Gyr



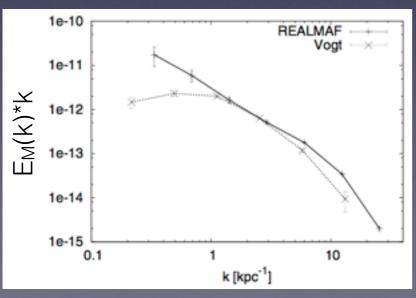
Durrer & Neronov, A&A Rev. 2013



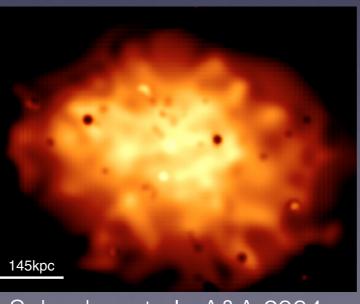
Taylor & Perley, ApJ 1993

ICM magnetic fields

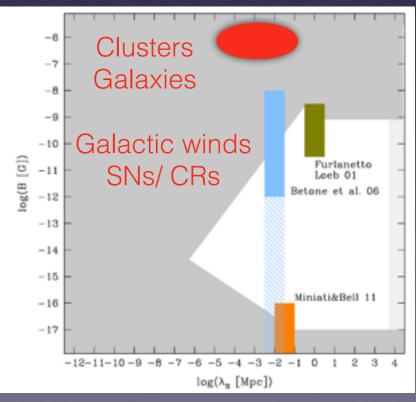
- How do you make microGauss fields at 1-100 kpc scales?
- Different processes invoked
 - Magnetization via galactic outflows and jets
 - Collisionless shocks in ICM / filaments
 - Dynamo effect throughout cosmic times
- Is turbulence (T~10-100 Myr) in the ICM or filaments a good dynamo?



Kuchar & Ensslin, A&A 2011



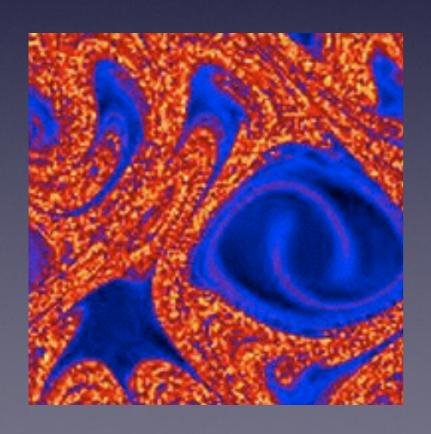
Schueker et al., A&A 2004

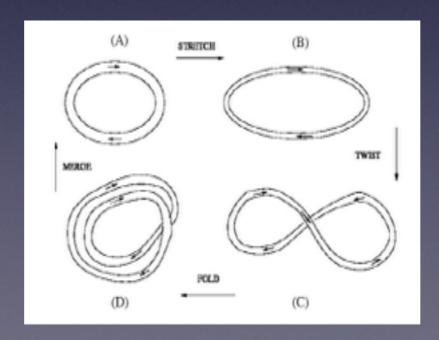


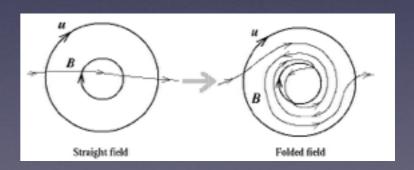
Durrer & Neronov, A&A Rev. 2013

Turbulent "small-scale" dynamo

- Homogeneous, isotropic, non-helical, incompressible, chaotic flow of conducting fluid is a dynamo flow
 - Batchelor-Moffatt-Zeldovich's stretch-fold mechanism
 - All you need is a smooth 3D chaotic flow, viscous flow can do the job







First evidence in 3D MHD simulations

Helical and Nonhelical Turbulent Dynamos

M. Meneguzzi

Centre National de la Recherche Scientifique and Section d'Astrophysique, Division de la Physique, Centre d'Etudes Nucléaires de Saclay, F-91191 Gif-Sur-Yvette, France

and

U. Frisch

Centre National de la Recherche Scientifique, Observatoire de Nice, F-06007 Nice, France

and

A. Pouquet(a)

Centre National de la Recherche Scientifique, Observatoire de Meudon, F-92190 Meudon, France (Received 13 April 1981)

Direct numerical simulations of three-dimensional magnetohydrodynamic turbulence with kinetic and magnetic Reynolds numbers up to 100 are presented. Spatially intermittent magnetic fields are observed in a flow with nonhelical driving. Small-scale helical driving produces strong large-scale nearly force-free magnetic fields.

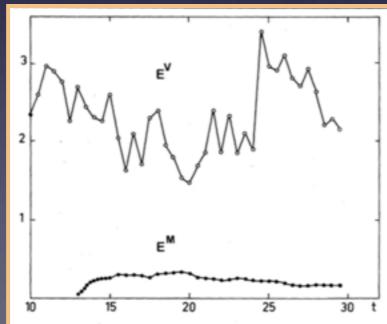


FIG. 1. Turbulent dynamo with nonhelical driving. Temporal variation of kinetic (E^V) and magnetic (E^M) energy. Reynolds numbers are $R^V = R^M \approx 100$. The time unit is the eddy-turnover time l_0/v_0 .

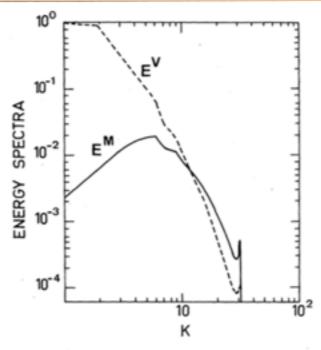
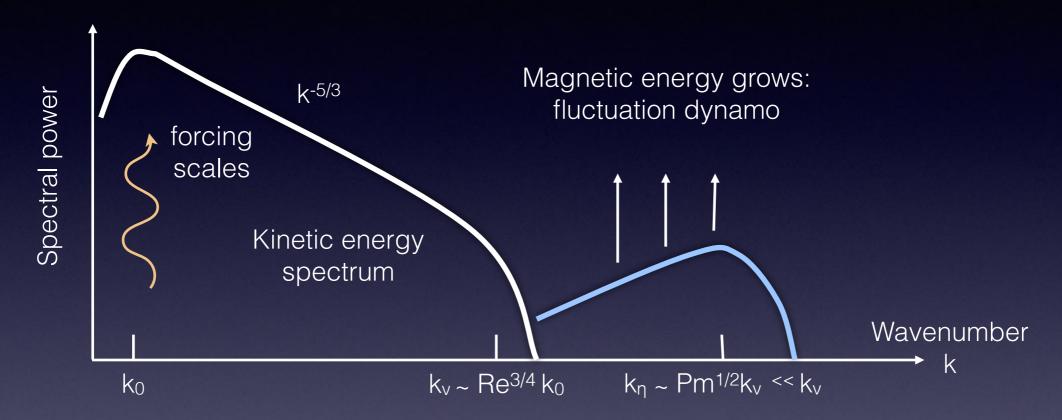


FIG. 2. Kinetic (E^V) and magnetic (E^M) energy spectra at t = 27. Nonhelical dynamo with $R^V = R^M \approx 100$.

Large magnetic Prandtl number regime

In such a fluid, the dynamo field grows at small scales



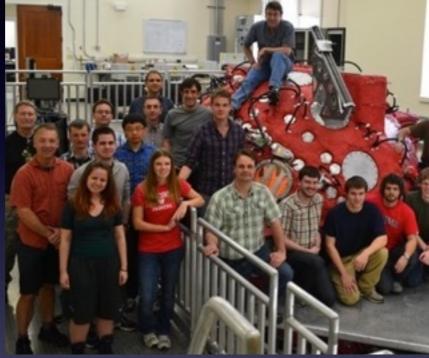
- Naive ICM "MHD" parameters
 - Collisional viscosity estimate: Re ~ UL/v ~ 10-100
 - Spitzer conductivity: Rm ~ UL/η ~ 10²⁹ or more
 - Magnetic Prandtl number Pm ~ v/η ~ 10²⁸⁻³⁰

What about weakly-collisional plasmas?

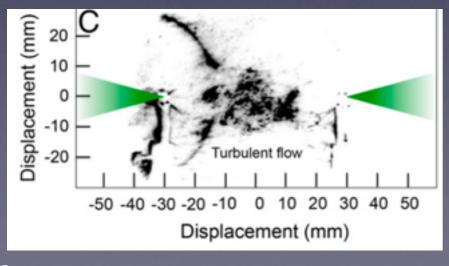
- So far, dynamo has only been demonstrated in MHD fluids
 - Many high-energy astrophysical plasmas are not MHD fluids
- ICM plasma regime
 - Dynamical/injection scales ~ 10¹⁷⁻¹⁸ km ~ 10 100 kpc (T~10-100 Myr)
 - Mean free path ~10¹⁶⁻¹⁷ km ~ 1-10 kpc
 - Larmor radii ~ 10⁴ km
- Coupled "fluid-" and "kinetic-scale" phenomena
 - Large-scale dynamics: MTI, HBI, AGN, mergers, dynamo?
 - Collisionless damping, magnetization effects (pressure anisotropies)

Plasma dynamo: an experimental quest in progress

Madison Plasma Dynamo Experiment @U. Wisconsin



Oxford Laser Plasma group (Gregori, Meinecke et al., PNAS 2015)

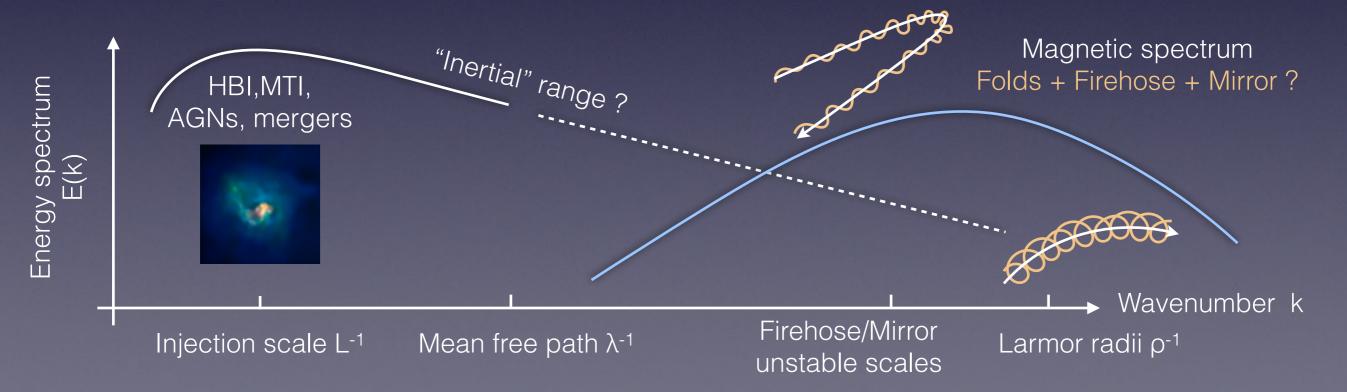


Turbulent Plasma experiment

@ ENS Lyon

Collisionless plasma dynamo problem

- The most efficient eddies are the smallest, fastest ones
 - In the ICM, such plasma motions are weakly collisional
- Plasma is magnetised well below equipartition (ICM: 10-13 G)
 - Field-stretching motions (= dynamo!) generate pressure anisotropy
 - Pressure-anisotropy driven instabilities!

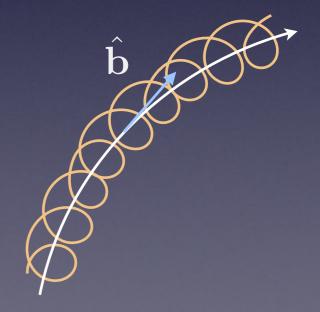


Pressure anisotropy generation

- In a magnetized, weakly collisional plasma
 - The pressure is an anisotropic tensor with respect to the direction of B
 - $\mu_s = m_s v_\perp^2/2B$ is almost conserved
- Large-scale, field-stretching motions generate pressure anisotropy
 - Collisions tend to relax it

$$\frac{1}{p_{\perp}} \frac{\mathrm{d}p_{\perp}}{\mathrm{d}t} \sim \frac{1}{B} \frac{\mathrm{d}B}{\mathrm{d}t} - \nu_{ii} \frac{p_{\perp} - p_{\parallel}}{p}$$

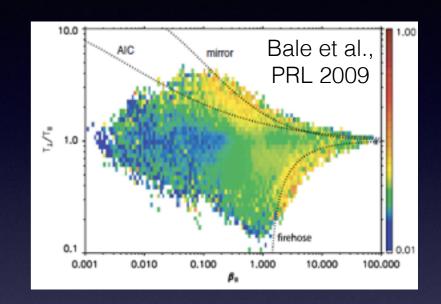
$$\frac{1}{B}\frac{\mathrm{d}B}{\mathrm{d}t} = \hat{\mathbf{b}}\hat{\mathbf{b}} : \nabla \mathbf{u}$$

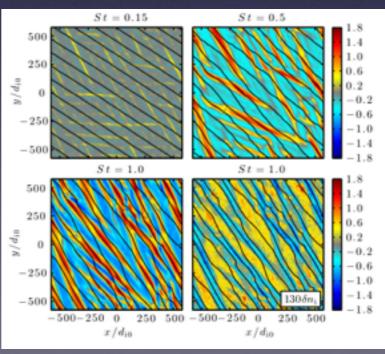


Pressure anisotropy-driven instabilities

- $\mu = mv_{\perp}^2/2B$ conservation implies kinetic instability everywhere
 - local increase of |B| —> increase of p⊥
 - mirror instable $\frac{p_{\perp}-p_{\parallel}}{p_{\perp}}>1/\beta$
 - local decrease of |B| —> decrease of p⊥
 - firehose instable $\frac{p_{\perp}-p_{\parallel}}{p_{\perp}}<-2/\beta$

- Small, fast scales
 - ICM: $\rho_{\rm i} \sim 10^4$ km, $\Omega_{\rm i}^{-1} \sim {\rm second}$
- Feedback non-linearly on "fluid" scales Scheckochihin et al., ApJ 2005, Schekochihin et al., PRL 2008; Rosin et al., MNRAS 2011; Rincon et al., MNRAS 2015





Kunz et al., PRL 2014

Collisionless plasma dynamo problem(s)

- Unmagnetized problem: $\rho_i/L>1$
 - Is a collisionless, unmagnetized 3D chaotic flow of plasma a good dynamo?
- Magnetized problem: $\rho_i/L < 1$
 - How do pressure-anisotropy kinetic instabilities interfere with magnetic growth?
- Annoying "details"
 - Dynamo is a fundamentally 3D process in physical space (Cowling)
 - No rigid "guide" field here: kinetic description "3V" in velocity space
- Modelling requires 3D-3V simulations (+time integration!)
 - Very costly: O(10⁶-10⁷ CPU hours) per simulation
 - Use simplest possible appropriate kinetic model

Forced hybrid Vlasov-Maxwell system

Kinetic, collisionless ions (initially Maxwellian)

$$\frac{\partial f_i}{\partial t} + \mathbf{v} \cdot \nabla f_i + \left[\frac{e}{m_i} \left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right) + \frac{\mathbf{F}}{m_i} \right] \cdot \frac{\partial f_i}{\partial \mathbf{v}} = 0$$

Isothermal, fluid massless electrons

$$\mathbf{E} = -\frac{T_e \nabla n_e}{e n_e} - \frac{\mathbf{u}_e \times \mathbf{B}}{c} + \frac{4\pi \eta}{c^2} \mathbf{j}$$

$$\mathbf{u}_e = \mathbf{u}_i - \mathbf{j}/(e n_e) \qquad \mathbf{j} = (c/4\pi) \nabla \times \mathbf{B}$$

• Quasi-neutrality: $n_e = n_i$

$$\nabla \cdot \mathbf{B} = 0$$

• Maxwell-Faraday:
$$\frac{\partial \mathbf{B}}{\partial t} = -c \, \nabla \times \mathbf{E}$$

Collisionless flow forcing

• δ -correlated-in-time large-scale forcing in kinetic ion equation

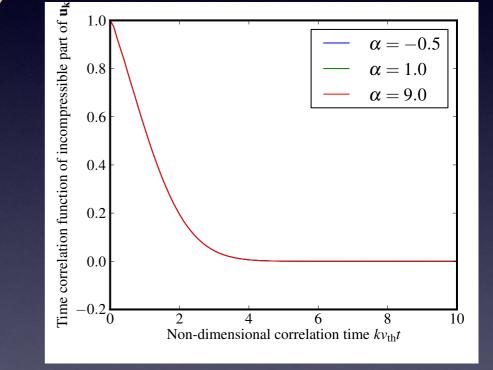
In the unmagnetized regime, flow statistics controlled by

phase-mixing (collisionless damping)

- Flow correlation time is $(k_f v_{thi})^{-1}$, a factor Mach number smaller than the turnover time
- the flow is effectively highly viscous

$$\langle F_{\mathbf{k},i}(t)F_{\mathbf{k},j}^*(t')\rangle = \chi(k)\,\delta(t-t')\left(\delta_{ij} - k_i k_j/k^2\right)$$

$$\left\langle u_{\mathbf{k},i}(t)u_{\mathbf{k},j}^*(t')\right\rangle = \frac{\chi(k)}{8\pi k^2} \left(\delta_{ij} - \frac{k_i k_j}{k^2}\right) \int_{-\infty}^{\infty} d\omega \, e^{-i\omega(t-t')} \left| Z\left(\frac{\omega}{k v_{\text{th}i}}\right) \right|^2$$



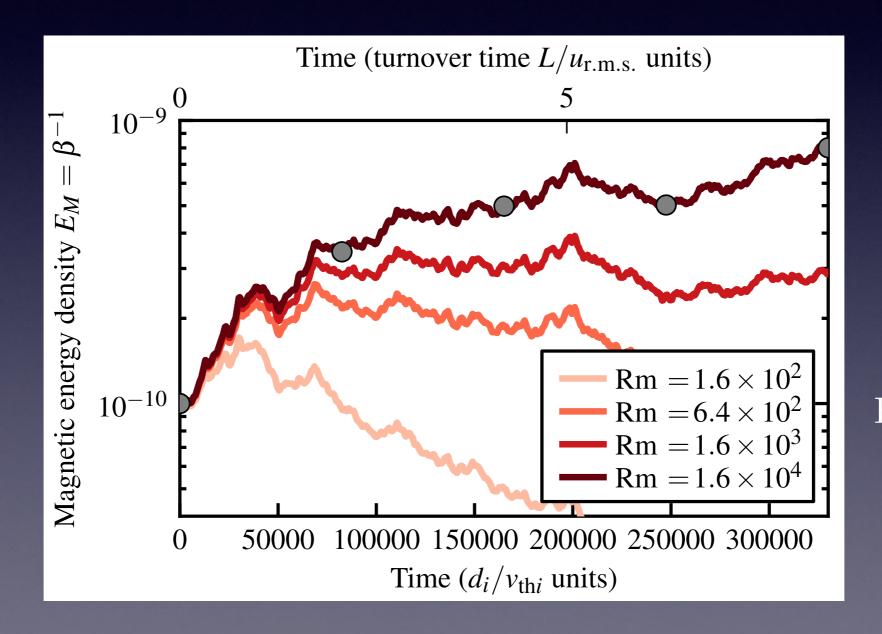
Smooth, large-scale, chaotic, subsonic, finite-amplitude flow

Dynamo simulations setup

- Solve hybrid Vlasov-Maxwell in 3D-3V with Eulerian code
 - 3D periodic, phase-space dimensions: $L=2000\pi d_i$, $v_{\mathrm{max}}=\pm 5v_{\mathrm{th}i}$
 - Resolution: 64³ (physical space) x 51³ (velocity space) (Valentini et al., JCP 2007)
- Incompressible, isotropic, non-helical delta-correlated forcing
 - $k_f = 2\pi/L$, injected power $\varepsilon = 3 \times 10^{-5} \, n_{i0} m_i v_{\mathrm{th}i}^3/d_i$
 - Box-scale, collisionless chaotic flow $u_{\rm r.m.s.} \sim 0.2 \, v_{\rm th}i$
- Initial conditions
 - Isotropic ion Maxwellian, T_e=T_i
 - Magnetic seed in wavenumber range $[2\pi/L, 4\pi/L]$
 - No guide/mean field!
 - Magnetic energy measured as inverse of plasma $\beta = 8\pi n_{i0}T_i/B_{\rm r.m.s.}^2$

Unmagnetized regime

• Four simulations with same initial field and flow history, but different magnetic diffusivity η

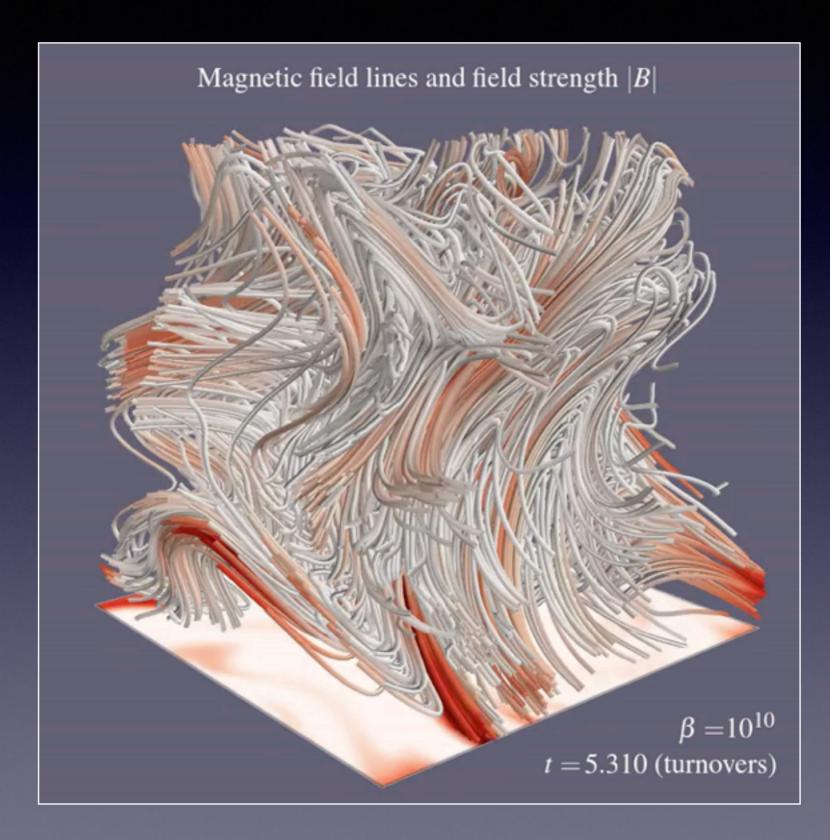


$$\beta = 10^{10}$$

$$\rho_i/L = 16$$

$$Rm = \frac{u_{\text{r.m.s.}}}{\eta k_f}$$

Unmagnetized regime: growing case

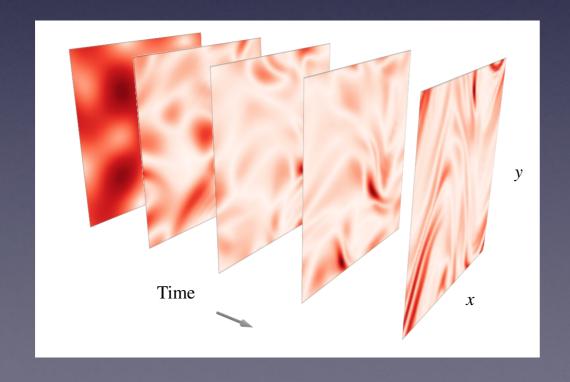


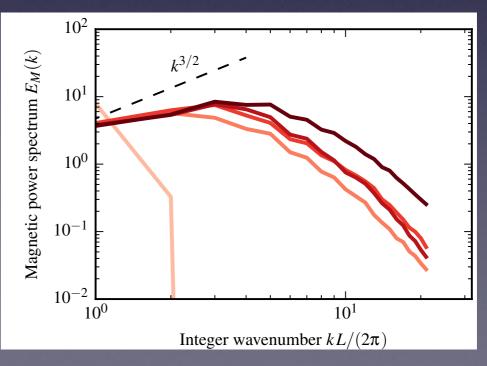
$$\beta = 10^{10}$$

$$\rho_i/L \simeq 16$$

Small-scale dynamo

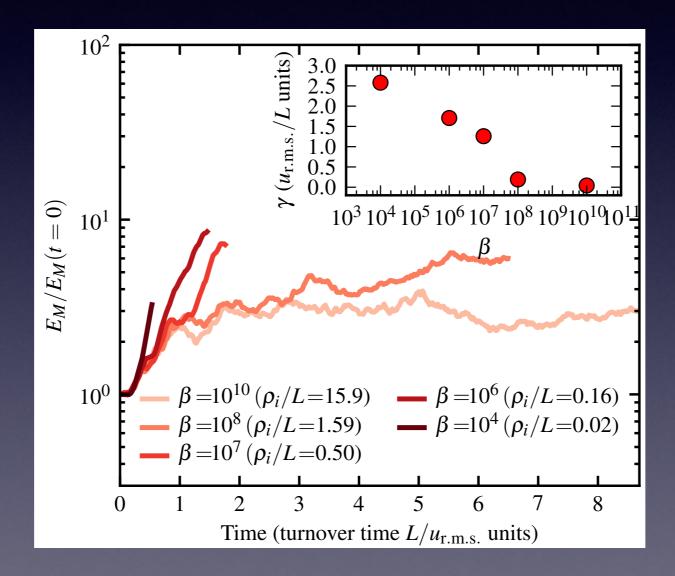
- Dynamo relies on chaotic stretching and folding of field lines
 - Folded field structure
 - Spectral evolution consistent with the formation of a Kasantsev spectrum
- Critical Rm larger than in MHD
 - Interpreted as a small flow correlation time effect
 - Energy growth rate ~ 0.15 turnover rate for Rm ~ 15000





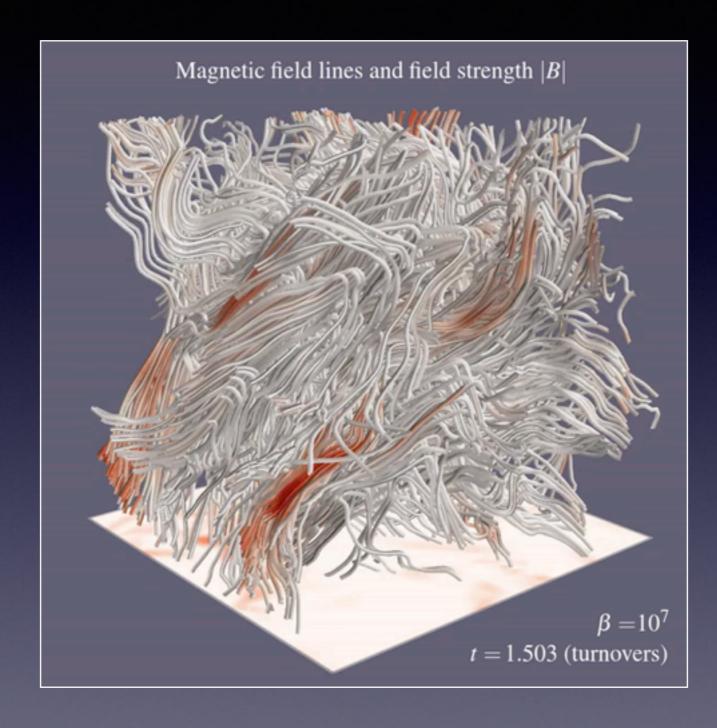
Exploring the magnetization transition

• Four simulations with same resistivity and input power, but different initial values of β



Magnetic growth appears to self-accelerate

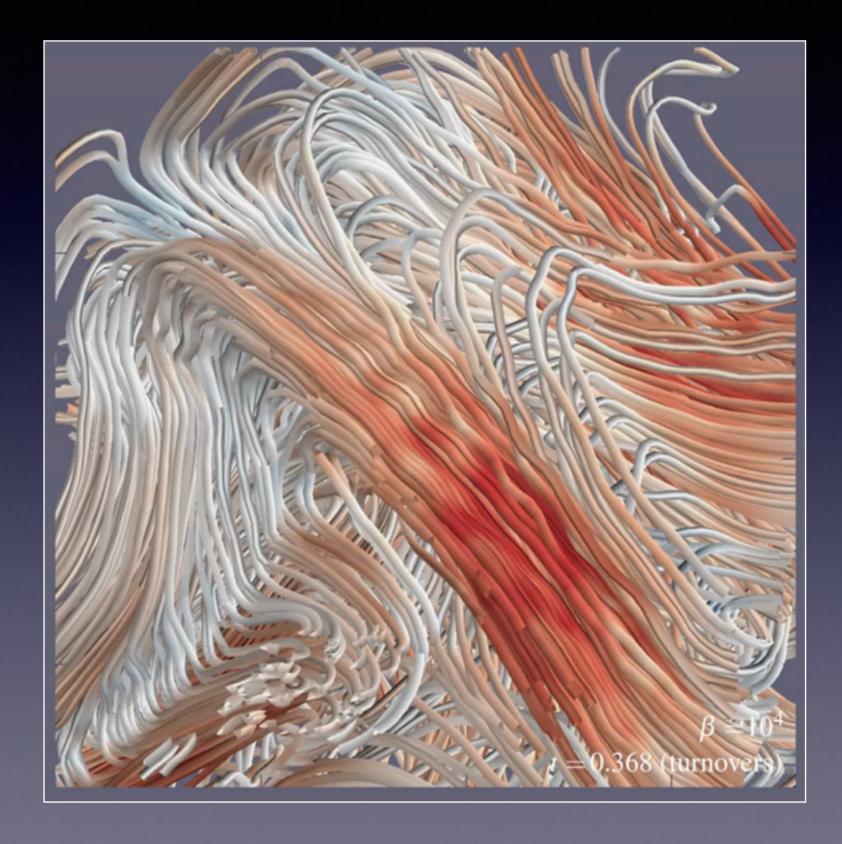
Magnetization transition



$$\beta = 10^7$$

$$\rho_i/L \simeq 0.5$$

No scale-separation between stirring and kinetic scales!

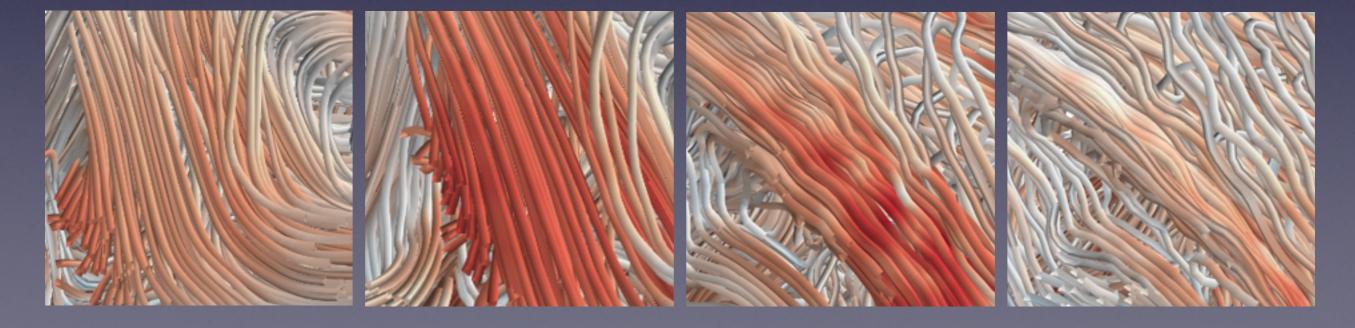


$$\beta = 10^4$$

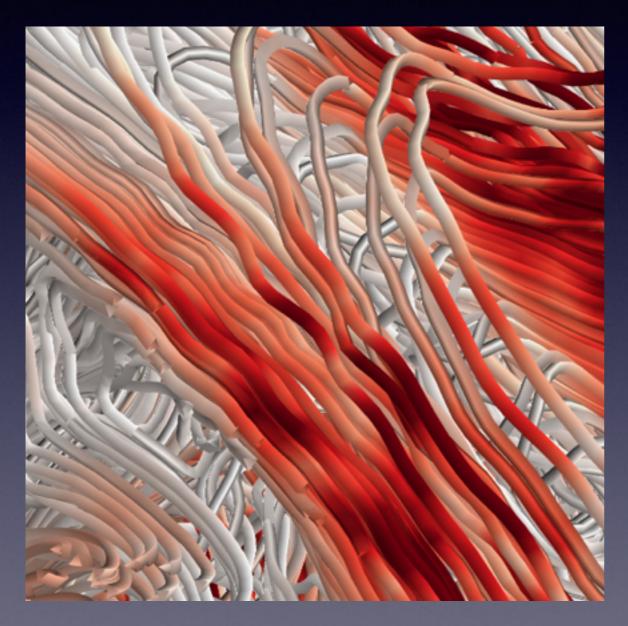
$$\rho_i/L \simeq 0.02$$

• Firehose instability in strong-field curvature regions

Bubbly mirror fluctuations in field-stretching regions



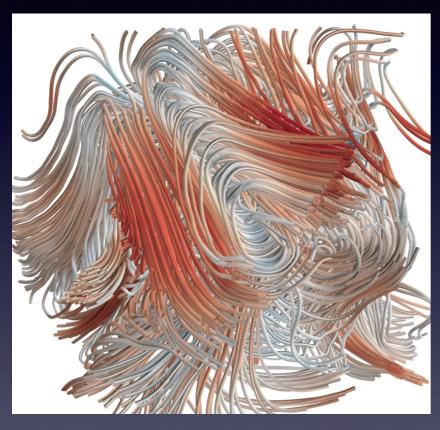
• Mirror structures: magnetic depressions and overdensities

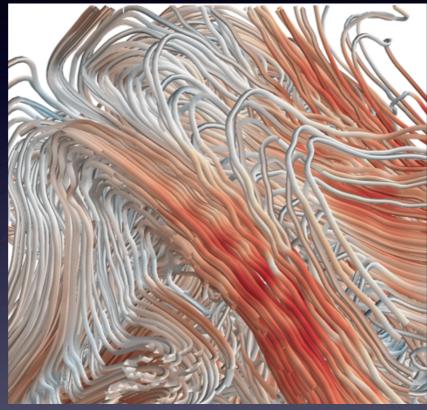


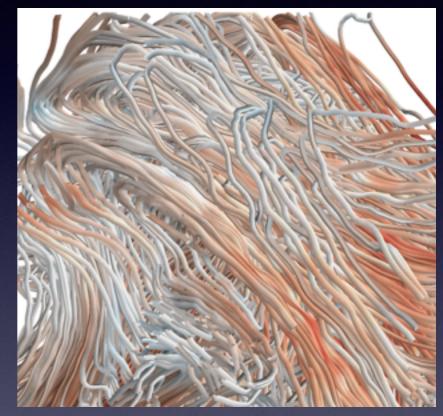
Magnetic strength

Density fluctuations

Pressure anisotropy relaxation



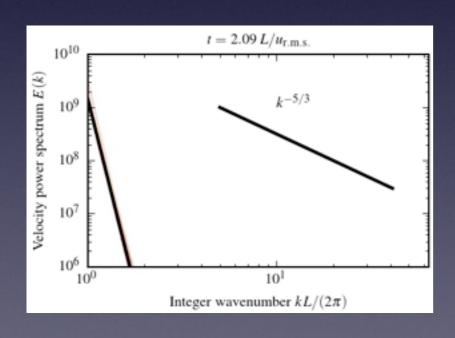


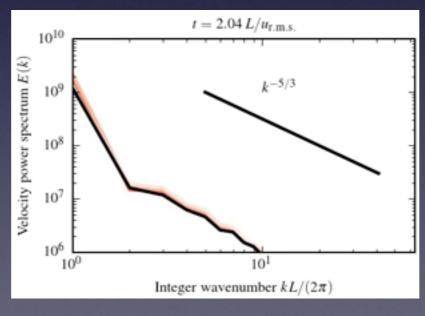


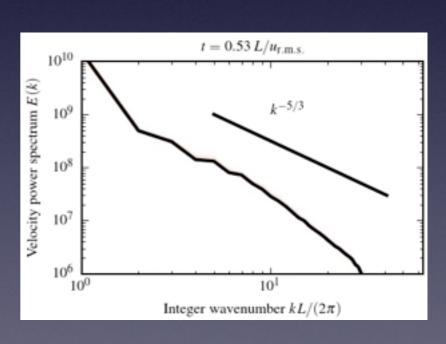
- Current limitations
 - Resolution: cannot go much further at 64³ x 51³
 - Simulations on longer timescales needed: expensive due to tiny timesteps

Ideas on dynamo self-acceleration

- Several "nonlinear" effects possible
 - Dynamo growth entangled with kinetic mode growth
 - Net nonlinear feedback of kinetic modes (see Matt Kunz's talk)
 - Flow viscosity decreases at magnetisation transition, eddies with larger rates of strains are generated







$$\beta = 10^{10}$$

$$\rho_i/L \simeq 16$$

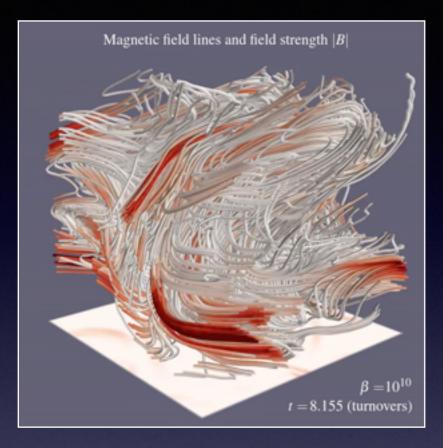
$$\beta = 10^7$$

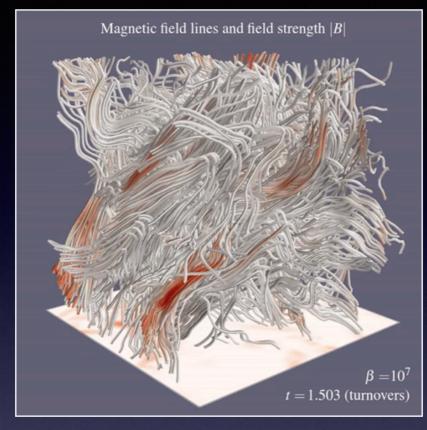
$$\rho_i/L \simeq 0.5$$

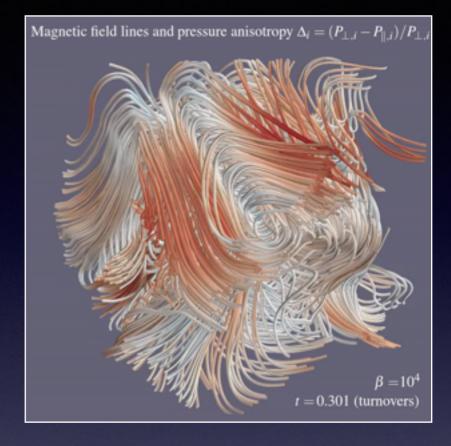
$$\beta = 10^4$$

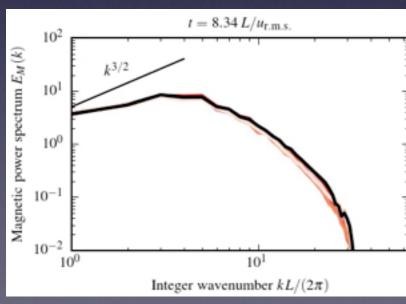
$$\rho_i/L \simeq 0.02$$

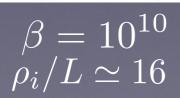
Magnetic spectra

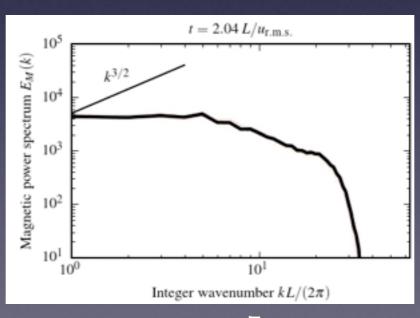






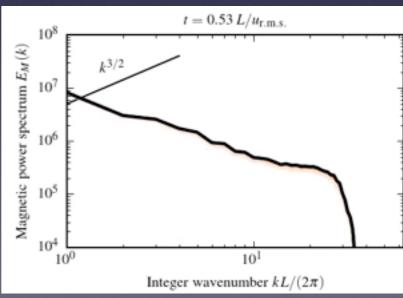






$$\beta = 10^7$$

$$\rho_i/L \simeq 0.5$$



$$\beta = 10^4$$

$$\rho_i/L \simeq 0.02$$

Main results and conclusions

- Dynamo in an unmagnetized collisionless plasma is possible
 - Reminiscent of turbulent large Pm MHD dynamo
- Growth self-accelerates as the plasma gets magnetized
- Dynamo and kinetic instabilities become entangled in the magnetized regime
 - Firehose instability in regions of strong field-curvature (negative Δ_i)
 - Mirror instability in regions of field amplification (positive Δ_i)
 - Evolution towards pressure-anisotropy-relaxed state
- Dynamo appears to be a viable mechanism to amplify magnetic field to equipartition in weakly collisional extragalactic plasmas