Numerical relativity and spectral methods

Philippe Grandclément

Laboratoire de l'Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris F-92195 Meudon, France

philippe.grandclement@obspm.fr

SF2A, June 2016

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Numerical relativity

In the strong field regime gravity is described by Einstein equations. It is a set of 10 highly coupled non-linear equations.

Two families of methods

- Semi-analytical : developments in terms of v/c (pN expansions).
- Use of computers : numerical relativity

Fields of application

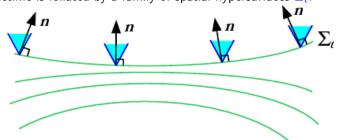
- Coalescence of compact binaries.
- Supernovae explosions.
- Structure of compact objects (magnetized neutrons stars, bosons stars...)

- 日本 - 4 日本 - 4 日本 - 日本

- Critical phenomena.
- Stability of ADS spacetimes (geons)
- and more...

3+1 formalism

Write Einstein equations in a way that is manageable by computers. It is a way of explicitly splitting time and space. Spacetime is foliated by a family of spatial hypersurfaces Σ_t .



- Coordinate system of Σ_t : (x_1, x_2, x_3) .
- Coordinate system of spacetime : (t, x_1, x_2, x_3) .

The line element reads

$$\mathrm{d}s^2 = -\left(N^2 - N^i N_i\right) \mathrm{d}t^2 + 2N_i \mathrm{d}t \mathrm{d}x^i + \gamma_{ij} \mathrm{d}x^i \mathrm{d}x^j$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Various functions

- Lapse N, shift \vec{N} and spatial metric γ_{ij} .
- They are all temporal sequences of spatial quantities.
- Lapse and shift are coordinate choice.

Туре	Einstein	Maxwell
	Hamiltonian $R + K^2 - K_{ij}K^{ij} = 0$	$\nabla \cdot \vec{E} = 0$
Constraints		
	Momentum : $D_j K^{ij} - D^i K = 0$	$\nabla \cdot \vec{B} = 0$
	$\frac{\partial \gamma_{ij}}{\partial t} - \mathcal{L}_{\vec{N}} \gamma_{ij} = -2NK_{ij}$	$\frac{\partial \vec{E}}{\partial t} = \frac{1}{\varepsilon_0 \mu_0} \left(\vec{\nabla} \times \vec{B} \right)$
Evolution		
	$\frac{\partial K_{ij}}{\partial t} - \mathcal{L}_{\vec{N}} K_{ij} = -D_i D_j N + N \left(R_{ij} - 2K_{ik} K_j^k + K K_{ij} \right)$	$rac{\partial ec{B}}{\partial t} = -ec{ abla} imes ec{E}$
	$N\left(R_{ij}-2K_{ik}K_{j}^{\kappa}+KK_{ij}\right)$	

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 R_{ij} is the Ricci tensor of γ_{ij} and D_i the covariant derivative associated with γ_{ij} .

 K_{ij} is called the extrinsic curvature.

A two steps problem

Evolution problem

- Given initial value of γ_{ij} (t = 0) and K_{ij} (t = 0)) use the evolution equations to determine the fields at later times.
- Similar to writing Newton's equation as $\partial_t x = v$; $\partial_t v = f/m$.
- Must ensure stability and accuracy.
- Must choose the lapse and shift in a clever way.

Initial data

- γ_{ij} (t = 0) and K_{ij} (t = 0) are not arbitrary but subject to the constraint equations.
- Is is a set of four elliptic coupled equations.
- Needs to make the link between a given physical situation and the mathematical objects γ_{ij} and K_{ij}

Both steps are equally important and complicated.

Spectral expansion

Given a set of orthogonal functions Φ_i on an interval Λ , spectral theory gives a recipe to approximate f by

$$f \approx I_N f = \sum_{i=0}^N a_i \Phi_i$$

Properties

- the Φ_i are called the basis functions.
- the *a_i* are the coefficients.
- Multi-dimensional generalization is done by direct product of basis.

Usual basis

- Orthogonal polynomials : Legendre or Chebyshev.
- Trigonometrical polynomials (discrete Fourier transform).

Coefficient and configuration spaces

There exist N + 1 point x_i in Λ such that

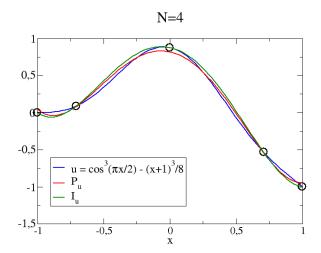
 $f\left(x_{i}\right) = I_{N}f\left(x_{i}\right)$

Two equivalent descriptions

- Formulas relate the coefficients a_i and the values $f(x_i)$
- Complete duality between the two descriptions.
- One works in the coefficient space when the a_i are used (for instance for the computation of f').
- One works in the configuration space when the $f(x_i)$ are employed (for the computation of $\exp(f)$)

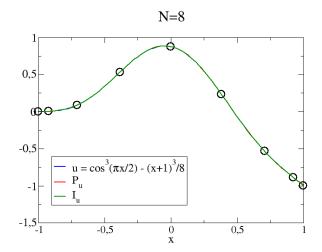
- If f is \mathcal{C}^{∞} , then $I_N f$ converges to f faster than any power of N.
- Much faster than finite difference schemes.
- For functions less regular (i.e. not C[∞]) the error decreases as a power-law.
- Spectral convergence can be recovered using a multi-domain setting.

Collocation points



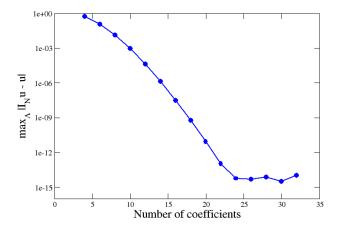
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Collocation points



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Spectral convergence



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Weighted residual methods

Let R = 0 be a field equation (like $\Delta f - S = 0$). The weighted residual method provides a discretization of it by demanding that

 $(R,\xi_i) = 0 \quad \forall i \le N$

Properties

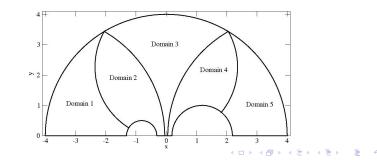
- $\bullet~(,)$ denotes the same scalar product as the one used for the spectral expansion.
- the ξ_i are called the test functions.
- For the τ-method the ξ_i are the basis functions (i.e. one works in the coefficient space).
- Some of the last residual equations must be relaxed and replaced by appropriate matching and boundary conditions to get an invertible system.
- Additional regularity conditions can be enforced by a Galerkin method.

KADATH is a library that implements spectral methods in the context of theoretical physics.

- It is written in C++, making extensive use of object oriented programming.
- Versions are maintained via Subversion.
- Minimal website : http://luth.obspm.fr/~luthier/grandclement/kadath.html
- The library is described in the paper : JCP 220, 3334 (2010).
- Designed to be very modular in terms of geometry and type of equations.
- LateX-like user-interface.
- More general than its predecessor LORENE.

Basic features

- Multi-domain approach (spherical, bispherical, cylindrical, periodic in times ...)
- In principle applicable to any kind of equations.
- The unknowns are the coefficients of all the fields in all space \vec{u} .
- The equations are dealt with using the weighted residuals method.
- The solution of the resulting discrete system $\vec{F}(\vec{u}) = 0$ is sought by a Newton-Raphson method.



The Newton-Raphson iteration

Properties

- Start from an initial guess and converges to the solution iteratively.
- Is the multi-dimensional generalization of Newton method.
- At each step : inversion of the Jacobian linear system Jx = S.

Implementation in KADATH

- The Jacobian is computed numerically by means of an automatic differentiation technique.
- It is obtained column by column (easy to parallelize).
- The inversion is also parallel and done via SCALAPACK
- The Jacobian can be very big $(200,000 \times 200,000)$, especially for 3D problems.
- Can require several thousands of processors (used on various supercomputers like Curie).

A boson star is described by a complex scalar field ϕ coupled to gravity. Is an alternative to black holes, especially in the context of supermassive objects at the center of galaxies.

The field is invariant under a U(1) symmetry :

 $\phi \longrightarrow \phi \exp\left(i\alpha\right).$

The Lagrangian of the matter is given by

$$\mathcal{L}_M = -\frac{1}{2} \left[g^{\mu\nu} \nabla_\mu \bar{\phi} \nabla_\nu \phi + V \left(|\phi|^2 \right) \right].$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- One seeks solutions such that $\phi = \phi_0 \exp \left[i \left(\omega t k\varphi\right)\right]$.
- ϕ_0 and the metric fields depend only on (r, heta)
- The solutions are found using the *Polar* space of KADATH , for axisymmetric configurations.
- One solves Einstein equations coupled to the Klein-Gordon one.

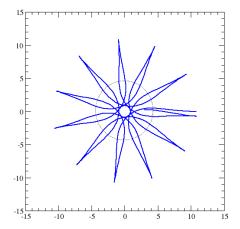
• Each BS is labelled by k and ω .

Field configuration



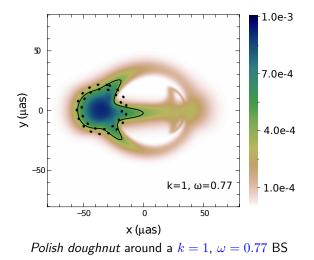
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Peculiar types of orbits



◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Accretion disk around a boson star



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Quasi-circular binaries

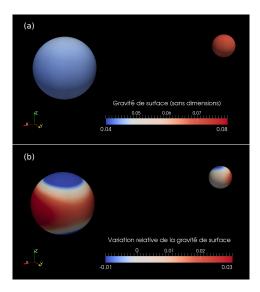
Properties

- Assume the orbits are closed and circular.
- Not exact due to gravitational waves emission.
- Enables to remove time by $\partial_t \longrightarrow \Omega \partial_{\varphi}$.
- Good approximation for widely separated objects.
- GW can be killed by the so-called conformal flatness approximation $\gamma_{ij}=\Psi^4 f_{ij}.$

Mathematical problem

- 5 unknown fields.
- 5 coupled, non-linear, elliptic equations.
- non-trivial boundary conditions on the horizons.
- Solved using the bispherical coordinates of KADATH .

Application : zeroth law of BBH thermodynamics



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Current status in KADATH

- No explicit time evolution.
- Always some symmetry in time (stationnarity, periodicity).

Spectral methods in time

- Not used by most of the groups (Runge-Kutta in time).
- Possible to implement :
 - Use Chebyshev polynomials in time
 - Impose the value of f(t=0) and $\partial_t f(t=0)$.

- Integrate on $[0, \Delta T]$.
- Repeat for latter times
- Conditions on ΔT ?
- Long compared to Runge-Kutta. Useful?

Iterative solvers

Most expensive part : computation and inversion of the Jacobian.

Alternative method for solving Jx = S

- Krylov subspace : assume $x \approx \sum_n J^n S$.
- Finds *x* iteratively.
- Each iteration requires to be able to compute products like $J \times f$.
- Various incarnations (Bicgstab, GMRES).

Properties

- Faster if the number of iterations \ll size of the Jacobian.
- But convergence is far from being guarantied.
- Need for a precondition M (solve MJx = MS).
- Requires some fine-tuning of the algorithm

Probably not general enough for KADATH but worth investigating in some given cases.

Conclusions

- After years of struggle numerical relativity is able to produce meaningful results.
- Still some work (initial data, various fields configurations, realistic simulations).
- Spectral methods are a powerful tool.
- KADATH enables their use in a very modular manner.
- Several applications but still ongoing work.

