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Numerical relativity

In the strong field regime gravity is described by Einstein equations. It is
a set of 10 highly coupled non-linear equations.

Two families of methods

@ Semi-analytical : developments in terms of v/c (pN expansions).

@ Use of computers : numerical relativity

Fields of application

@ Coalescence of compact binaries.

@ Supernovae explosions.

@ Structure of compact objects (magnetized neutrons stars, bosons
stars...)

@ Critical phenomena.

@ Stability of ADS spacetimes (geons)

@ and more...




3+1 formalism

Write Einstein equations in a way that is manageable by computers.
It is a way of explicitly splitting time and space.
Spacetime is foliated by a family of spatial hypersurfaces >;.
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o Coordinate system of 3, : (z1,z2,23).

o Coordinate system of spacetime : (t, 1, z2, x3).



Metric quantities

The line element reads
ds? = — (N? — N'N;) dt® + 2N;dtds’ + ;;da’ da’
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Various functions

@ Lapse N, shift N and spatial metric ;;.

@ They are all temporal sequences of spatial quantities.

@ Lapse and shift are coordinate choice.
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Projection of Einstein equations

’ Type H Einstein \ Maxwell
Hamiltonian R + K2 — K;; K" =0 V-E=
Constraints
Momentum : D; K% — D'K = () V-B=
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Evolution
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R;; is the Ricci tensor of 7;; and D; the covariant derivative associated

with Yij-
K.

i; is called the extrinsic curvature.




A two steps problem

Evolution problem

@ Given initial value of v;; (¢ = 0) and K;; (¢t = 0)) use the evolution
equations to determine the fields at later times.

o Similar to writing Newton's equation as Oz = v; v = f/m.

@ Must ensure stability and accuracy.

@ Must choose the lapse and shift in a clever way.

Initial data

@ v;; (t =0) and Kj;; (t = 0) are not arbitrary but subject to the
constraint equations.

@ Is is a set of four elliptic coupled equations.

@ Needs to make the link between a given physical situation and the
mathematical objects v;; and K;;

Both steps are equally important and complicated.



Spectral expansion

Given a set of orthogonal functions ®; on an interval A, spectral theory
gives a recipe to approximate f by

N
f=INf= Zaiq)i
i=0

@ the ®; are called the basis functions.

o the a; are the coefficients.

@ Multi-dimensional generalization is done by direct product of basis.

v
Usual basis

@ Orthogonal polynomials : Legendre or Chebyshev.

e Trigonometrical polynomials (discrete Fourier transform).
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Coefficient and configuration spaces

There exist N + 1 point z; in A such that

J(xs) = Inf (23)

Two equivalent descriptions

o Formulas relate the coefficients a; and the values f (x;)

@ Complete duality between the two descriptions.

@ One works in the coefficient space when the a; are used (for
instance for the computation of f’).

@ One works in the configuration space when the f (x;) are employed
(for the computation of exp (f))




Spectral convergence

If fis C®, then Iy f converges to f faster than any power of N.

Much faster than finite difference schemes.

For functions less regular (i.e. not C*°) the error decreases as a
power-law.

Spectral convergence can be recovered using a multi-domain setting.
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Collocation points
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Spectral convergence
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Weighted residual methods

Let R =0 be a field equation (like Af — .S = 0). The weighted residual
method provides a discretization of it by demanding that

(R,&) =0 Vi< N

@ (,) denotes the same scalar product as the one used for the spectral
expansion.

@ the &; are called the test functions.

@ For the T—method the &; are the basis functions (i.e. one works in
the coefficient space).

@ Some of the last residual equations must be relaxed and replaced by
appropriate matching and boundary conditions to get an invertible
system.

e Additional regularity conditions can be enforced by a Galerkin
method.




What is KADATH?

KADATH is a library that implements spectral methods in the context of

theoretical physics.

@ It is written in C4++, making extensive use of object oriented
programming.
@ Versions are maintained via Subversion.

@ Minimal website :
http ://luth.obspm.fr/~luthier/grandclement/kadath.htm/

@ The library is described in the paper : JCP 220, 3334 (2010).

@ Designed to be very modular in terms of geometry and type of
equations.

o LateX-like user-interface.

@ More general than its predecessor LORENE.




Basic features

o Multi-domain approach (spherical, bispherical, cylindrical, periodic in
times ...)

@ In principle applicable to any kind of equations.

@ The unknowns are the coefficients of all the fields in all space .

@ The equations are dealt with using the weighted residuals method.
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The solution of the resulting discrete system ﬁ(i) = 0 is sought by
a Newton-Raphson method.

Domain 1




The Newton-Raphson iteration

@ Start from an initial guess and converges to the solution iteratively.

@ Is the multi-dimensional generalization of Newton method.

@ At each step : inversion of the Jacobian linear system Jz = S.

Implementation in KADATH

@ The Jacobian is computed numerically by means of an automatic
differentiation technique.

o It is obtained column by column (easy to parallelize).
@ The inversion is also parallel and done via SCALAPACK

@ The Jacobian can be very big (200, 000 x 200, 000), especially for
3D problems.

@ Can require several thousands of processors (used on various
supercomputers like Curie).




Boson star model

A boson star is described by a complex scalar field ¢ coupled to gravity.
Is an alternative to black holes, especially in the context of supermassive
objects at the center of galaxies.

The field is invariant under a U (1) symmetry :

¢ — pexp (i) .

The Lagrangian of the matter is given by

1 - .
Ly = 75 {yvaéﬁvucﬁ +V (|¢|2)] .



Structure of the solution

@ One seeks solutions such that ¢ = ¢ exp [i (wt — k).
@ ¢ and the metric fields depend only on (r,0)

@ The solutions are found using the Polar space of KADATH , for
axisymmetric configurations.

@ One solves Einstein equations coupled to the Klein-Gordon one.
@ Each BS is labelled by k and w.
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Peculiar types of orbits




Accretion disk around a boson star
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Quasi-circular binaries

@ Assume the orbits are closed and circular.

@ Not exact due to gravitational waves emission.

@ Enables to remove time by 9; — Q0.

@ Good approximation for widely separated objects.

@ GW can be killed by the so-called conformal flatness approximation
vig = U fij.

Mathematical problem

@ 5 unknown fields.

@ 5 coupled, non-linear, elliptic equations.

@ non-trivial boundary conditions on the horizons.

@ Solved using the bispherical coordinates of KADATH .




Application : zeroth law of BBH thermodynamics
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Time evolutions

Current status in KADATH

@ No explicit time evolution.

@ Always some symmetry in time (stationnarity, periodicity).
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Spectral methods in time

@ Not used by most of the groups (Runge-Kutta in time).

@ Possible to implement :

Use Chebyshev polynomials in time

Impose the value of f (¢t = 0) and 9:f (t = 0).
Integrate on [0, AT.

Repeat for latter times

e Conditions on AT'?

@ Long compared to Runge-Kutta. Useful ?
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Iterative solvers

Most expensive part : computation and inversion of the Jacobian.

Alternative method for solving Jx = S

o Krylov subspace : assume z = )" J"S.

@ Finds x iteratively.

@ Each iteration requires to be able to compute products like J x f.
@ Various incarnations (Bicgstab, GMRES).

Properties

Faster if the number of iterations < size of the Jacobian.

@ But convergence is far from being guarantied.
@ Need for a preconditionner M (solve M Jxz = MS).
°

Requires some fine-tuning of the algorithm

Probably not general enough for KADATH but worth investigating in
some given cases.



Conclusions

o After years of struggle numerical relativity is able to produce
meaningful results.

@ Still some work (initial data, various fields configurations, realistic
simulations).

@ Spectral methods are a powerful tool.
@ KADATH enables their use in a very modular manner.

@ Several applications but still ongoing work.




