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Galaxy formation in the ΛCDM model
From a very homogeneous early Universe to the current distribution of galaxies, clusters and voids...

� The standard ΛCDM cosmological model:
− 26% cold dark matter (CDM)
− 5% baryons (ordinary matter)
− 69% dark energy (accelerated expansion, Λ)

� The Universe is initially very homogeneous (cf.
cosmic microwave background, 380 000 years
after the Big Bang).

� Gravitational attraction vs. the expansion of
the Universe.

� Hierarchical dark matter dynamics, baryons
cool and contract within dark matter haloes.

Images: ESA/Planck collaboration/C. Mihos/ESO/A. Block/NOAO/AURA/NSF/
A. Evans/NASA/S. Beckwith/Hubble Heritage Team/STScI/AURA/Skatebiker Volker Springel et al. (2008)
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Star formation & feedback processes

Structure formation is mostly driven by dark matter
dynamics at cosmological scales, but baryonic
processes become important at galactic scales.

Star formation

Stellar feedback mechanisms
� Strong radiation fields
− UV ionizing radiation from young stars: heats

the gas up to 104 K and photodissociates H2
− Photoevaporation (& rocket effect)
− Radiation pressure

� Stellar winds
� Supernovae explosions

Active galactic nuclei (AGN) feedback
� Radiation
� Outflowing winds
� Highly-collimated jets

Positive feedback:
� heavy elements enhance cooling
� compression waves Vogelsberger et al. (2014)
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Gas and stellar cycles within galaxies

A galaxy can be seen as a gas reservoir fed by accretion and emptied through star formation
and outflows. Some of the outflowing gas can fall back onto the galaxy and be recycled
(bathtub model: Bouché et al. 2010, Dekel & Mandelker 2014).

Ṁgas︸ ︷︷ ︸
gas reservoir

= Ṁgas,in︸ ︷︷ ︸
inflows

− Ṁstars︸ ︷︷ ︸
star formation

− ηṀstars︸ ︷︷ ︸
outflows

+ RṀstars︸ ︷︷ ︸
recycling

Lilly et al. (2013)
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Challenges of the ΛCDM paradigm at galactic scales

� “Downsizing”
Massive galaxies host the oldest stellar populations, which seems to contradict the hier-
archical ΛCDM model. But star formation is more efficient for haloes of mass between
1010 − 1012 M� (cf. galaxy luminosity function).

� The “angular momentum catastrophe”
Early simulations with minimal feedback models formed disks that were too small as the
gas cooled excessively and transfered its angular momentum to the dark matter. Stronger
feedback models yield more realistic disks.

� Bulgeless giant galaxies
The ΛCDM model predict bulges (from mergers or clump evolution within the disk), while
many bulgeless giant galaxies are observed in the vicinity of the Milky Way.

� The “too big to fail’ problem’
Numerical simulations predict too many subhaloes than observed for galaxies like our
Milky Way, and the simulated subhaloes are too big to fail to form stars so we should
observe them. Also, the most massive simulated subhaloes don’t seem to match the
observed ones in terms of mass (simulated ones too massive).

� The core-cusp discrepancy
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The core-cusp discrepancy

� Dark matter cosmological simulations predict a
universal ‘cuspy’ density profile for dark matter
haloes, with ρ ∝ r−1 at the center.

NFW profile (Navarro et al. 1996)

ρ(r) =
ρ0

r
Rs

(
1 + r

Rs

)2
� Observations of dark matter dominated dwarf, low-surface-brightness and dwarf satellite

galaxies instead show that the dark matter distribution is ‘cored’.

Oh et al. (2011): dwarf galaxies from the THINGS

� The core-cusp discrepancy is related to other challenges of the ΛCDM paradigm at galactic
scales: in particular, the ‘too big to fail’, the persistence of galactic bars, and the transfer of
angular momentum from the baryons to the dark matter.
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Attempts at solving the problem

� Solutions that fundamentally change the physics of the cosmological model:
− warm dark matter: could in principle yield more diffuse dark matter structures, but the

density profiles are often still cuspy & the power spectrum might conflict with the Lyα
forest

− self-interacting dark matter: becomes collisional in the inner halo, heats up and produces
a shallower density profile; problems at cluster scales

− exotic cut-offs in the matter power spectrum: ‘fuzzy’ ultra-light particles predicted
by string theory; asymmetric, repulsive, or fermionic dark matter; alternative inflation
models; etc.

− MOND (Milgrom 1983): fits galactic rotation curves, no cusp-core problem, but lacks
an underlying relativistic theory so can’t be extended to cosmological problems for the
moment; mass discrepancies in clusters, which may still require a form of dark matter

� Solutions invoking baryonic processes within the ΛCDM framework:
Baryons play an important role at galactic scales, and can interact gravitationally with the
dark matter. In particular, recent simulations with feedback are able to reproduce cored
density profiles. What are the precise mechanisms through which baryons can affect the
dark matter distribution?
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How can baryons affect the dark matter halo

� Adiabatic contraction
When baryons cool and contract, they accumulate at the center of the halo, which
steepens the potential well and causes the dark matter to contract as well.

� Dynamical friction
When a massive object (satellite galaxy, clump of gas) moves with respect to a background
of smaller particles, it loses part of its energy as the concentration of particles increases
in its wake and generates a drag force. El-Zant et al. (2001, 2004): cores.

� Repeated potential fluctuations from feedback processes

Pontzen & Governato (2012): repeated, non-adiabatic potential fluctuations from feedback
can heat the dark matter and lead to the formation of a core.
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An analytical model

� To isolate further the physical mechanism through which dark matter gains energy, we present
and test a theoretical model in which the gravitational potential fluctuations leading to core
formation arise from feedback-induced stochastic density variations in the gas distribution.

� Our goal:
− characterize the effects of such variations on the dark matter particles in a statistical

sense: resulting velocity variance, relaxation time

− test the model with numerical simulations, notably in the case of dwarf haloes

� Assumptions:
− an unperturbed homogeneous gaseous

medium of density ρ0;

− isotropic density perturbations within a
sphere of radius d , i.e., within a volume
V ∝ d3;

− a power-law power spectrum

P(k) = V 〈|δ~k |
2〉 = VCk−n;

− minimum and maximum scale lengths
λmin and λmax (or alternatively,
kmax = 2π/λmin and kmin = 2π/λmax );

− a stationary process.

Fourier decomposition of the density
contrast δ(~r) and of the resulting
force on the dark matter particles:

δ(~r) =
V

(2π)3

∫
δ~k e i~k.~r d3~k

φ~k = −4πGρ0 k−2 δ~k

~F~k = 4πi Gρ0 ~k k−2 δ~k
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Velocity variance

� Integrating the equation of motion of a dark matter particle and averaging over the different
particles enables to write the velocity variance after a time T in terms of the force time
correlation function:

〈∆v2〉 = 2
∫ T

0
(T − t) 〈F (0)F (t)〉 dt.

� Introducing vr the characteristic velocity of the dark matter particles with respect to the
fluctuating field, r = vr t and R = vrT the distances a test dark matter particle travels
relatively to the field during time t and T yields

〈∆v2〉 =
2
v2r

∫ R

0
(R − r) 〈F (0)F (r)〉 dr .

� Injecting the expression of the force auto-correlation function

〈F (0)F (~r)〉 =
V

(2π)3

∫
|~F~k |

2 e i~k.~r d3~k

and assuming kmax � kmin and kminR � 1, we obtain with D = 8CV (Gρ0)2

〈∆v2〉 ∼
πD
nvr

T
kn
min

.

− The velocity dispersion is set by the largest fluctuation scale λmax = 2π/kmin.
− The assumption R � 1/kmin corresponds to the diffusion limit where the small persistent

density fluctuations initiate random walks for the dark matter particles

Jonathan Freundlich 16 Juin 2016 10 / 15



Relaxation time
In stellar dynamics, stars get deflected by their 2-body interactions with each other. ∆v grows
progressively and eventually reaches its original velocity 〈v〉. trelax is the time at which ∆v = v .

� Here,
trelax =

nvr 〈v〉2

8π(Gρ0)2V 〈|δkmin |2〉
.

mean unperturbed orbital velocity at radius l : 〈v〉 ∼ l/tD(l) ∼ l
√

Gρ(l).
vr due to the largest fluctuation scale: vr ∼ d

√
Gρ(d).

� Evaluation of trelax for a fiducial
dwarf halo with NFW density profile

Mvir = 2.26 1011 M�

Rvir = 30 kpc

Rs = 0.9 kpc

d/2 = 5 kpc

f (d/2) = 17%

n = 2.4

〈δ2kmin
〉 = 0.005
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The relaxation time gives a time scale at which the density variations are expected to affect the
trajectories of the dark matter particles, but does not specify the global response of the system.
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Numerical test setup

� The self consistent field (SCF) method developed by Hernquist & Ostriker (1992):
− collisionless systems
− at each time step: computes the gravitational potential and advances the particles’

trajectories accordingly
− density and potential expanded in a set of basis functions deriving from spherical harmonics
− expansion cut-off radial and angular numbers, nmax and lmax (∼ softening)

optimal choice for ∼ 105 particles: nmax = 10, lmax = 4 (Vasiliev 2013)

� Initial conditions: the fiducial dwarf NFW halo previously defined

� Density perturbations as in the analytical calculations:
− power-law power spectrum
− λmin = 10 pc, λmax = 1 kpc
− added in the code through their effect on the force and on the gravitational potential
− random direction of the force on each particle
− the pulsation frequency associated to a mode k is defined

• either as ω(k) = vgk with a constant propagation velocity, vg = d/tD(d).
• either as ω(k) = 2

√
k from Larson’s relation σ ∝ k−0.5

(ω−1 in units of 10 Myr and k in kpc−1)
− the total force is rescaled a posteriori to match the assumed power-spectrum normalization
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Simulation results: the spherical case (lmax = 0)

� The assumed stochastic density fluctuations lead to the formation of a core in an initially
cuspy configuration within a timescale comparable to the relaxation time derived analytically:
The fluctuations leading to core formation may be modeled as stochastic processes and
their dynamical effects as a diffusion process.

� The effects mostly depend on the fluctuation level and the gas fraction. As expected from
the expression of the relaxation time, the dependence in n is weak. λmin and λmax do not
affect the resulting core (understandable in terms of diffusion limit).
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Simulation results: non-radial modes (lmax 6= 0)

� Removing spherical symmetry leads to an accelerate cusp-core transformation, with the same
parametrization.

� The processes through which the energy stemming from the fluctuations is redistributed
within the halo could be largely non-isotropic. Asphericity seems to be a key ingredient for
an efficient cusp-core transition (cf. also Pontzen et al. 2015).
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Perspectives

� Inputs from hydrodynamical simulations with different implementations of feedback (stellar,
AGN, etc.) to specify the statistical properties of the fluctuating density field and better
understand the feedback models. Collaborations with Andrea Maccio & Liang Wang (NIHAO
project), Justin Read, Andrew Pontzen, James Bullock.

� Generalize the calculations to a non-homogeneous gas distribution, relate our stochastic
model with the bathtub model, episodes of inflows/violent outflows, and the calculations of
Pontzen & Governato (2012). Collaboration with Avishai Dekel.
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Influence of the time step

� Time scales associated to the fiducial perturbations, with λmin = 10 pc and λmax = 1 kpc.
− When ω(k) = vgk with vg = d/tD(d) = 134 kms−1:

• T (kmin) = 2π/ω(kmin) = 7.5 Myr
• T (kmax ) = 2π/ω(kmax ) = 0.075 Myr

− When ω(k) = 2
√

k:
• T (kmin) = 12.5 Myr
• T (kmax ) = 1.3 Myr

� As the perturbations are dominated
by those near the largest scale
λmax = 2π/kmax , the simulation
already converges for timesteps
δt . 2.5 Myr.

� We carried most of our simula-
tions at δt = 0.1 Myr, which
gives similar results as those at
δt = 0.01 Myr.
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Influence of the fluctuation level δkmin

� Evolution after 500 Myr for different fluctuation levels averaged over ten realizations and
corresponding scatter.
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Influence of λmin and λmax

� The normalization of the force only weakly depends on the minimum fluctuation scale λmin =
2π/kmax as kmin � kmax but does depend on the maximum fluctuation scale determined
by kmin:

〈F (0)2〉 =
8 (Gρ0)2 〈|δkmin |

2〉 d3

n − 1
kmin.

� Accordingly, the effect of the perturbations does not depend on λmin. But it does not depend
on λmax either. Why?

� In a diffusion process, particle trajectories are
affected by small successive kicks:
− at each kick, ∆v ∼ F∆t, with ∆t

characteristic duration of a kick
− as ω = vgk, ∆t ∝ 1/k

(∆t ∝ 1/
√

k if ω = 2
√

k)
− during a time T , there are

N ∼ T/∆t ∝ k kicks
(N ∝

√
k if ω = 2

√
k)

− after N kicks, 〈∆v2〉 = N∆v2
− hence, 〈∆v2〉 ∝ F 2/k independent of k

(〈∆v2〉 ∝
√

k if ω = 2
√
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Influence of the radial decomposition trough nmax

� Evolution after 500 Myr for different values of nmax , for lmax = 4.
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Influence of the orbital decomposition through lmax

� Evolution after 500 Myr for different values of lmax , at fixed nmax = 10.

� When lmax = 0, the flattening of the density profile is almost imperceptible, but not non-
existing. Running the simulation longer yields a similar flattening as with lmax 6= 0. The
condition lmax imposes a spherically-symmetric potential at each time step, which smooths
out the effects of the perturbations as they are averaged over θ, φ. Energy redistributed
through non-isotropic processes.

� For lmax = 8, the discreteness of the simulation becomes visible.
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